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The Color of Absorbing Scattering Substrates. 
I. The Color of Fabrics 

E. HOPE ALLEN* and G. GOLDFINGER, North Carolina State University 
at Raleigh School of Textiles, Raleigh, North Carolina 27607 

synopsis 
A treatment of the color of textile materials is proposed which is an extension of G. G. 

Stokes’ “pile of plates” problem. Unlike the conventional treatment of this subject, e.g., 
that by Kubelka and Munk, this approach permits independent determination of all 
variables: coefficient of absorption of the dye, refractive indexes of the fibers, the effect 
on color of the geometry of the fabric and yarn, and the distribution of the dye within the 
fiber. Here, cylindrical, optically homogeneous fibers in a parallel array are assumed. 
Experimental data show that this treatment predicts far more satisfactorily the color of 
fabrics at high dye concentrations and low reflectance values than does the Kubelka- 
Munk approach. 

INTRODUCTION 

Kubelka and Munkl.* described the color of absorbing-scattering sub- 
strates in terms of a quantity K/S ,  where K is the coefficient of absorption, 
and S, the one of scattering, and where, under a wide variety of reflectance 
conditions, the ratio can be taken to be proportional to the concentration 
of the colorant. Among several treatments of the problem of relating 
colorant concentration to reflected color,g this one has enjoyed widest 
acceptance in the textile industry. 

Within the limitation of the Kubelka-Munk treatment, it should be 
possible to predict the color of a textile material viewed in a medium of one 
refractive index, air, from its color when viewed in another, for example, 
water (nD = 1.33). (The practical importance of this is obvious and need 
not be discussed here.) Experimental evidence4 indicates that the limi- 
tations of the Kubelka-Munk treatment are too restrictive to leave room 
for any worthwhile predictions of this nature. 

The work, the first step of which is reported here, has been undertaken 
because of the need for a “better” theory. Also, the Kubelka-Munk 
approach is esthetically not satisfying: (a) K and S cannot be determined 
by independent measurements; (b) the absorbing-scattering substrate 
has to be treated as a continuum which a textile material, in most cases, 
manifestly is not (e.g., for all practical purposes, the diameter of textile 
single fibers is between 10 and 100 p ) .  
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Beginning with Stokes6 in 1860, several  author^,^-^^^^ including Kubelka,13 
have treated the problem of reflectance by and transmittance through 
((a pile of parallel plates.” One can, of course, consider each “plate” as an 
array of fibers, that is to say, one sheet of a fabric. Such an approach 
meets one of the objections to the Kubelka-Munk treatment. 

The approach outlined here is based on the “pile of plates” model. 
However, unlike the Kubelka treatment, it leaves open the possibility to 
consider the geometry of the array constituting the plate. It also permits 
one to include the effect of the coefficient of absorption of the fiber-dye 
system, the refractive indexes of the fiber, and the distribution of the dye 
in the fiber on the color of the textile substrate. Conceptually, this treat- 
ment is a special case of those which preceded it; but mathematically, it 
reduces to the cases referred to above. 

In this first treatment, we assume that each (‘plate” consists of a parallel 
array of isotropic cylinders of equal diameters which are large compared to 
the wavelength of light. In these cylinders the dye is uniformly distributed. 
The “plates” are immersed in an optically transparent, continuous medium. 

The two variables used are CK, the product of the coefficient of absorp- 
tion (per radius of the fiber) of the dye times its concentration, and m, the 
ratio of the refractive index of the fiber, n2, to that of the continuous 
medium, nl. 

MATHEMATICAL TREATMENT 

Model of the Fabric 
It is assumed that the absorbing-scattering substrate consists of a 

number of distinct layers of infinitely wide arrays of isotropic cylindrical 
fibers (Fig. la), such that light of intensity &, = 1, incident on an array, 

a b C 

Fig. 1. (a) Cross section through model of fabric; (b) representation of grouping of 
absorbing-scattering arrays for the first iteration; (c) representation of grouping of ab- 
sorbing-scattering arrays for the second iteration. 
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Fig. 2. The reflection and refraction patterns on the first two layers of fabrics. 

causes one of three things to occur (Fig. 2): (a) it is reflected or refracted 
back in the general direction opposite to that of the light incident on it; 
(b) it is reflected or refracted in the same direction as the light incident on 
it; and (c)  finally, it is neither reflected nor refracted, in which case it is 
absorbed (fluorescence is not now considered). It follows, therefore, that 

s + t + a = & d d =  1 (1) 

where s is the energy reflected or refracted in the direction opposite to that 
of i0 dd, t is the energy reflected or refracted in the direction of io dd, and a 
is the energy absorbed. 

We can consider the events taking place on the first pair of arrays (Fig. 
la) as follows: the incident light, a parallel monochromatic bundle, strikes 
the first layer and may be reflected from the surface of the constituent 
fibers or refracted by them in a manner such that its vector projection onto 
a coordinate normal to the enveloping boundary has a sign opposite to that 
associated with the incident beam (Fig. 2). The light may also be re- 
flected or refracted in a manner such that an analogous treatment leads to 
a vector projection of opposite sign. 
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By eq. ( l ) ,  the light not accounted for, which is, of course, the absorbed 
portion a, is given by 

l - a = s + t  (2) 
and, setting t = ks, 

l - a  
l + k  

s = -  

and 

t = k(-) l - a  
l + k  

(3) 

(4) 

Since 6 dd was set to equal 1, t represents the fraction of the energy 
incident on the’second layer; and from that t2 is the fraction transmitted 
through both layers in this first sequence of events, assuming that the 
angular distribution of the radiation remains the same for each layer. 
However, the light back reflected from the second layer might also be 
reversed in direction a second time on the first layer, and thus one arrives 
a t  the total light energy transmitted through the first pair of layers: 

k2(1 - a)2  
(1 + k)2 - (1 - a)2 

- 12 

1 - s2 
T1”--  

Through similar consideration, we can calculate the fraction of the 
incident energy reflected by this set of two arrays of fibers: 

(6) 
t 2  l - a  

Ul  = s (1 + ,,) = s(1 + 71) = - + (1 + 71) 

This entire argument can now be repeated by considering the first two 
layers as forming a new single array and, similarly, the third and fourth 
layers constituting a second array (Fig. lb). Thus, in general terms, 

c n  = cn-1 (1 + rn) (7) 
and 

After establishing the values of a and k, the function u can be evaluated 
numerically. 

The Value of a 

By the laws of optics, 

m s i n a  = sin0 (9) 

where f3 is the angle of incidence and a is that of refraction; m = %/n1, as 
defined above, If we set the radius of the circle representing a cross 
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Fig. 3. Cross section through fiber and the path of reflected and refracted light. De- 
termination of a. 

section of a cylindrical fiber equal to 1 (Fig. 3), then sin 0 = d, and sin a = 
d 
m 
- 

The length of the path traveled by refracted light Zp is 

l p  = 2 cos a = 2 Jl-2 
for each step of the refraction. 

internal refraction and first internal reflection is 
The fraction of light transmitted through the fiber between the point of 

e = l O - C K 2 d K K G  (11) 
where CK is the product of the coefficient of absorption per unit radius 
and the concentration of colorant. 

The light energy initially refracted is & dd(1 - p) ,  where p is given by 
the appropriate form of the Fresnel equations. Thus, setting again & = 1, 
and writing e for 1 0 - - c K 2 m 2  on the first path, (1 - p)e of the light 
is transmitted, and (1 - p )  - (1 - p)e = (1 - p)(l - e) is absorbed. 
Through the second path the transmitted amount is (1 - p)ep,  and, of 
course, (1 - p)ep - (1 - p)e2p = (1 - p)ep(l - e) is absorbed. Summing 
over an infinite number of steps, one obtains 

a = (1 - p) . ( l  - e)/( l  - ep) (12) 
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where p has two values, which have to be handled separately for the 
parallel and perpendicular polarization components of the radiation : 

Thus, throughout the calculation, eq. (12) will be handled separately for 
p = pII and p = pL, and numerical integration will be carried out for the 
values of a calculated from d = 0 to d = 1. 

Calculation of k 
The k = t / s  value give& the ratio of the energy reflected and refracted 

downward to that reflected and refracted upward across the plane defining 
the surface of the sample. The value of k is a function both of m, the 
refractive index ratio, and a, the absorption. Under the limiting con- 
dition that all refracted light is absorbed by the fiber, k is entirely domi- 
nated by reflection. As can easily be seen, for values of d = 0 to d = 
0.707 (0 = 0" to 8 = 45") the reflection is upward in Figure 4, and for 
values of d = 0.707 to d = 1 (0 = 45" to 0 = W"), downward. 

I 

0°-----13 I 

T 

.- . , . . . - 
I 

270°- 
?? 

90" - 

J 
160" 

I 
Fig. 4. Determination of the direction of refraction for the calculation of k. 
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To calculate the direction of the refracted radiation an auxiliary quantity, 
the angle @ is used. 

Figure 4 shows that if @ is between 270" and go", in the upper half (in 
other words, if COB B is positive), the first refraction is upward; and if @ 
is between 90" and -270", in the lower half (if cos @ is negative), the 
first refraction is downward. (From Fig. 4 it can be seen that p1 = 180" 
- z(e - a).) 

This can be transcribed in the now familiar terms of d and m as 

or 

COS& = - ( 1  - 2d2) 4 1  ~ - d2 dT2 1 - - (15) 

For the second refraction, & = @I + (180 - 2a) .  Subsequent re- 
fractions, n = 1,2,3. . . . , increase the angle @, by this same value, (180 - 
2a) .  In our now familiar form of expression, 

The value of k can be summarized as 

weighted for parallel and perpendicular polarized portions of the radiation 
(with the appropriate values substituted for the p's) and the numerical 
summation carried out separately according to the constraints indicated in 
the subscripts. 

LIMITING ASSUMPTIONS 

The limiting assumptions made to simplify the problem fall into two 
categories: (1) geometric assumptions, (2)  optical simplifications. 

Geometric Assumptions. As mentioned before, the model assumes for 
each layer an array of cylindrical fibers of finite thickness which does, in 
fact, conform with physical reality. It also assumes that these fibers are so 
closely packed that all incident light interacts with fibers in each array. 
Simultaneously, however, the contradictory assumption is made that fibers 
within each array do not interact with the optical pattern of reflection-re- 
fraction for adjacent fibers. It is hoped that this contradiction will prove 
tolerable, since estimating the effects of interaction is no less difficult than 
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correcting for them. (An exact treatment of this problem of fabric geom- 
etry is at present under way.) 

The assumption that the fibers are cylinders of equal diameter is often 
also untrue, and, in practice, arrays of fibers are far more complex than 
assumed here. This is a problem with which we plan to deal later. 

Optical Assumptions. The assumption of optical isotropy is manifestly 
untrue for fibers. It is hopea that the average index of refraction is an ade- 
quate approximation. 

The diameter of the fibers, which in practice is a t  least 20 times the 
wavelength of light in question, is adequate justification for the naive 
geometry of the reflection-refraction model. It is hoped that this simple 
reflection-refraction pattern is adequate and that any fine structure of 
reflection refraction resulting from interference cancels adequately. 

No provision is made for the indefinite value of the index of refraction 
at  absorption peaks in the hope that this effect is effectively averaged. 

RESULTS 
A computer program has been written to calculate u for values of rn = 

n2 (fiber)/nl (medium) = 1.0, 1.1, . . . 2.0 and CK = 0 (for entirely trans- 
parent fibers) to CK = 8.5 (for which u is less than 0.01). (Because the 
number 8.5 appears in a double exponential it is the largest value that could 
be handled in a Fortran IV program.) The numerical summation of the 
u values was extended to rn < 10" a,. 

Fig. 5. Continuous line is a plot of the reflectance R vs. the product of the dye Concen- 
tration and its coefficient of absorption CK for a refractive index ratio m = 1.6 calculated 
from this treatment. Dotted line is the Corresponding Kubelka-Munk curve. A c o d -  
cient f = 49.5 for the relationship f .  CK = K / S  has been determined from the points for 
CK from 0 to 0.1. (R,  the symbol customary in textile technology, is used instead of 
U". 1 
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CK-. cr(- 
Fig. 6. Reflectances R for various values of m, the refractive index ratio, are plotted vs. 

CK. (R,  the symbol customary in textile technology, is used instead of un.) 

It has been shown in previous papers*#” that the plot of the ratio of 
reflectance values obtained for dry and wet samples against the reflectance 
of the dry samples indicates that the Kubelka-Munk treatment is in- 
adequate to predict the results. Figure 5 compares the Kubelka-Munk 
prediction to one based on this approach for m = 1.6. For CK values 
below 0.1, the two curves coincide if the relationship K / S  = 49.5CK is 
assumed. However, at  higher values of absorbance, lower values of re- 
flectance, our treatment predict8 higher reflectance values than those by 
Kubelka and Munk. It is, of course, well known that for high dye con- 
centrations the Kubelka-Munk equation has to be corrected in the direction 
of higher reflectance to provide proper predictions. 

In Figure 6, R versus CK is shown for several values of m, the refractive 
index ratio. 

CONCLUSIONS 
The Kubelka-Munk theory of the color of absorbing-scattering sub- 

strates has been formulated for paint films, in which colored (absorbing) 
and white (scattering) particles are distributed in a vehicle (e.g., drying 
oil), which constitutes the continuous medium. The very wide applicabil- 
ity of this treatment amply proves the soundness of its limiting assumptions. 
In the case of textiles, the theory is notoriously undependable at high dye 
concentrations or low reflectance values. This can in practice be taken 
care of by correcting terms. 

The approach here suggested has advantages over the theory of Kubelka 
and Munk: 

1. Ik  contains the means of refinement to account for conditions en- 
countered with textiles, such as nonuniformity of dye distribution, surface 
effects of the fibers, abaorbing-scattering events within the fibers, etc. 

2. It conforms in its discontinuous model more closely to the physical 
reality with all its attendant objective and subjective advantages. 



2982 ALLEN AND GOLDFINGER 

3. It is based on independently measurable quantities; refractive in- 
dexes, absorption coefficients of the dyed fibers, and cross-sectional di- 
mensions (in the simplest case, fiber radius). 
4. It permits (in its more refined form) calculation of the effect on the 

color of the textile material of nonuniform dye distribution, cross-sectional 
dimensions, shapes and surface characteristics of fibers, and fabric and yarn 
geometries. This permits optimizing technical, economic, and marketing 
considerations. 

Work along those lines is in progress, in part completed, and will be 
published as experimental verification becomes available. 
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